4.2 Article

Fluorescence Lifetime Nanoscopy of Liposomal Irinotecan Onivyde: From Manufacturing to Intracellular Processing

期刊

ACS APPLIED BIO MATERIALS
卷 6, 期 10, 页码 4277-4289

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsabm.3c00478

关键词

onivyde; irinotecan; SN-38; phasorFLIM; fluorescence; INS-1E cells

向作者/读者索取更多资源

This study investigated the physical state and transformation process of Onivyde drug using fluorescence imaging techniques. The analysis revealed the coexistence of two physical states within Onivyde liposomes, with the gelated/precipitated phase dissolving rapidly upon dilution. The study also demonstrated the appearance of the SN-38 metabolite during intracellular processing. These findings provide fresh insights into the synthetic identity of Onivyde and highlight the importance of advanced imaging techniques in understanding drug formulations and improving delivery applications.
Onivyde was approved by the Food and Drug Administration (FDA) in 2015 for the treatment of solid tumors, including metastatic pancreatic cancer. It is designed to encapsulate irinotecan at high concentration, increase its blood-circulation lifetime, and deliver it to cells where it is enzymatically converted into SN-38, a metabolite with 100- to 1000-fold higher anticancer activity. Despite a rewarding clinical path, little is known about the physical state of encapsulated irinotecan within Onivyde and how this synthetic identity changes throughout the process from manufacturing to intracellular processing. Herein, we exploit irinotecan intrinsic fluorescence and fluorescence lifetime imaging microscopy (FLIM) to selectively probe the supramolecular organization of the drug. FLIM analysis on the manufacturer's formulation reveals the presence of two coexisting physical states within Onivyde liposomes: (i) gelated/precipitated irinotecan and (ii) liposome-membrane-associated irinotecan, the presence of which is not inferable from the manufacturer's indications. FLIM in combination with high-performance liquid chromatography (HPLC) and a membrane-impermeable dynamic quencher of irinotecan reveals rapid (within minutes) and complete chemical dissolution of the gelated/precipitated phase upon Onivyde dilution in standard cell-culturing medium with extensive leakage of the prodrug from liposomes. Indeed, confocal imaging and cell-proliferation assays show that encapsulated and nonencapsulated irinotecan formulations are similar in terms of cell-uptake mechanism and cell-division inhibition. Finally, 2-channel FLIM analysis discriminates the signature of irinotecan from that of its red-shifted SN-38 metabolite, demonstrating the appearance of the latter as a result of Onivyde intracellular processing. The findings presented in this study offer fresh insights into the synthetic identity of Onivyde and its transformation from production to in vitro administration. Moreover, these results serve as another validation of the effectiveness of FLIM analysis in elucidating the supramolecular organization of encapsulated fluorescent drugs. This research underscores the importance of leveraging advanced imaging techniques to deepen our understanding of drug formulations and optimize their performance in delivery applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据