4.3 Article

Deep Learning for Automated Measurement of Patellofemoral Anatomic Landmarks

期刊

BIOENGINEERING-BASEL
卷 10, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/bioengineering10070815

关键词

deep learning; body weights and measures; patellofemoral joint; arthroplasty; knee replacement; CT

向作者/读者索取更多资源

This study used deep learning to automatically measure knee anatomy and analyzed several key parameters. The results showed that the model accurately identified patellofemoral landmarks and produced human-comparable measurements, which can enhance our ability to analyze knee anatomy at scale and improve outcomes.
Background: Patellofemoral anatomy has not been well characterized. Applying deep learning to automatically measure knee anatomy can provide a better understanding of anatomy, which can be a key factor in improving outcomes. Methods: 483 total patients with knee CT imaging (April 2017-May 2022) from 6 centers were selected from a cohort scheduled for knee arthroplasty and a cohort with healthy knee anatomy. A total of 7 patellofemoral landmarks were annotated on 14,652 images and approved by a senior musculoskeletal radiologist. A two-stage deep learning model was trained to predict landmark coordinates using a modified ResNet50 architecture initialized with self-supervised learning pretrained weights on RadImageNet. Landmark predictions were evaluated with mean absolute error, and derived patellofemoral measurements were analyzed with Bland-Altman plots. Statistical significance of measurements was assessed by paired t-tests. Results: Mean absolute error between predicted and ground truth landmark coordinates was 0.20/0.26 cm in the healthy/arthroplasty cohort. Four knee parameters were calculated, including transepicondylar axis length, transepicondylar-posterior femur axis angle, trochlear medial asymmetry, and sulcus angle. There were no statistically significant parameter differences (p > 0.05) between predicted and ground truth measurements in both cohorts, except for the healthy cohort sulcus angle. Conclusion: Our model accurately identifies key trochlear landmarks with similar to 0.20-0.26 cm accuracy and produces human-comparable measurements on both healthy and pathological knees. This work represents the first deep learning regression model for automated patellofemoral annotation trained on both physiologic and pathologic CT imaging at this scale. This novel model can enhance our ability to analyze the anatomy of the patellofemoral compartment at scale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据