4.8 Review

Donor-acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells

期刊

CHEMICAL SOCIETY REVIEWS
卷 44, 期 5, 页码 1113-1154

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4cs00250d

关键词

-

资金

  1. Ministry of Science Technology
  2. Ministry of Education
  3. Center for Interdisciplinary Science (CIS) of the National Chiao Tung University, Taiwan
  4. Golden-Jade fellowship of the Kenda Foundation
  5. Foundation for the Advancement Outstanding Scholarship in Taiwan

向作者/读者索取更多资源

Harvesting solar energy from sunlight to generate electricity is considered as one of the most important technologies to address the future sustainability of humans. Polymer solar cells (PSCs) have attracted tremendous interest and attention over the past two decades due to their potential advantage to be fabricated onto large area and light-weight flexible substrates by solution processing at a lower cost. PSCs based on the concept of bulk heterojunction (BHJ) configuration where an active layer comprises a composite of a p-type (donor) and an n-type (acceptor) material represents the most useful strategy to maximize the internal donor-acceptor interfacial area allowing for efficient charge separation. Fullerene derivatives such as [ 6,6]-phenyl-C-61or 71-butyric acid methyl ester (PCBM) are the ideal n-type materials ubiquitously used for BHJ solar cells. The major effort to develop photoactive materials is numerously focused on the ptype conjugated polymers which are generally synthesized by polymerization of electron-rich donor and electron-deficient acceptor monomers. Compared to the development of electron-deficient comonomers (acceptor segments), the development of electron-rich donor materials is considerably flourishing. Forced planarization by covalently fastening adjacent aromatic and heteroaromatic subunits leads to the formation of ladder-type conjugated structures which are capable of elongating effective conjugation, reducing the optical bandgap, promoting intermolecular pi-pi interactions and enhancing intrinsic charge mobility. In this review, we will summarize the recent progress on the development of various well-defined new ladder-type conjugated materials. These materials serve as the superb donor monomers to prepare a range of donor-acceptor semiladder copolymers with sufficient solution-processability for solar cell applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据