4.0 Article

An efficient 3D cell-based discrete fracture-matrix flow model for digitally captured fracture networks

出版社

SPRINGERNATURE
DOI: 10.1007/s40789-023-00625-1

关键词

Fractured porous medium; Flow simulation; Digital image; Cell-based DFM; Finite volume method

向作者/读者索取更多资源

This paper proposes a simple and efficient numerical framework for simulating fluid flow in fractured porous media using high-resolution images. Through validation and simulations on real samples, the results show that the model achieves a good balance between computational efficiency and accuracy.
Complex hydraulic fracture networks are critical for enhancing permeability in unconventional reservoirs and mining industries. However, accurately simulating the fluid flow in realistic fracture networks (compared to the statistical fracture networks) is still challenging due to the fracture complexity and computational burden. This work proposes a simple yet efficient numerical framework for the flow simulation in fractured porous media obtained by 3D high-resolution images, aiming at both computational accuracy and efficiency. The fractured rock with complex fracture geometries is numerically constructed with a cell-based discrete fracture-matrix model (DFM) having implicit fracture apertures. The flow in the complex fractured porous media (including matrix flow, fracture flow, as well as exchange flow) is simulated with a pipe-based cell-centered finite volume method. The performance of this model is validated against analytical/numerical solutions. Then a lab-scale true triaxial hydraulically fractured shale sample is reconstructed, and the fluid flow in this realistic fracture network is simulated. Results suggest that the proposed method achieves a good balance between computational efficiency and accuracy. The complex fracture networks control the fluid flow process, and the opened natural fractures behave as primary fluid pathways. Heterogeneous and anisotropic features of fluid flow are well captured with the present model. Simple yet efficient method for fluid flow simulation in digital fracture networkFracture representation using a cell-based DFM with implicit fracture apertureA pipe-based cell-centered finite volume method for fluid seepage simulationAchieve a good balance between computational efficiency and accuracyCapture heterogeneous and anisotropic fluid flow characteristics

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据