4.8 Review

Hyperbranched polymers: advances from synthesis to applications

期刊

CHEMICAL SOCIETY REVIEWS
卷 44, 期 12, 页码 4091-4130

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4cs00528g

关键词

-

资金

  1. National Natural Science Foundation of China [21325417, 51173162]
  2. Fundamental Research Funds for the Central Universities [2013XZZX003]
  3. China Postdoctoral Science Foundation [2014M551724]

向作者/读者索取更多资源

Hyperbranched polymers (HPs) are highly branched three-dimensional (3D) macromolecules. Their globular and dendritic architectures endow them with unique structures and properties such as abundant functional groups, intramolecular cavities, low viscosity, and high solubility. HPs can be facilely synthesized via a one-pot polymerization of traditional small molecular monomers or emerging macromonomers. The great development in synthetic strategies, from click polymerization (i.e., copper-catalyzed azide-alkyne cycloaddition, metal-free azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, thiol-ene/yne addition, Diels-Alder cycloaddition, Menschutkin reaction, and aza-Michael addition) to recently reported multicomponent reactions, gives rise to diverse HPs with desirable functional/hetero-functional groups and topologies such as segmented or sequential ones. Benefiting from tailorable structures and correspondingly special properties, the achieved HPs have been widely applied in various fields such as light-emitting materials, nanoscience and technology, supramolecular chemistry, biomaterials, hybrid materials and composites, coatings, adhesives, and modifiers. In this review, we mainly focus on the progress in the structural control, synthesis, functionalization, and potential applications of both conventional and segmented HPs reported over the last decade.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据