4.8 Article

Poly(GR) in C9ORF72-Related ALS/FTD Compromises Mitochondrial Function and Increases Oxidative Stress and DNA Damage in iPSC-Derived Motor Neurons

期刊

NEURON
卷 92, 期 2, 页码 383-391

出版社

CELL PRESS
DOI: 10.1016/j.neuron.2016.09.015

关键词

-

资金

  1. ALS Association
  2. ALS Therapy Alliance
  3. Packard Center for ALS Research and Target ALS
  4. Association for FTD and the Angel Fund
  5. National Institutes of Health [R01NS057553, R01NS079725, R21NS086318, P01AG19724, P01NS084974, R21NS089979]

向作者/读者索取更多资源

GGGGCC repeat expansions in C9ORF72 are the most common genetic cause of both ALS and FTD. To uncover underlying pathogenic mechanisms, we found that DNA damage was greater, in an age-dependent manner, in motor neurons differentiated from iPSCs of multiple C9ORF72 patients than control neurons. Ectopic expression of the dipeptide repeat (DPR) protein (GR)(80) in iPSC-derived control neurons increased DNA damage, suggesting poly(GR) contributes to DNA damage in aged C9ORF72 neurons. Oxidative stress was also increased in C9ORF72 neurons in an age-dependent manner. Pharmacological or genetic reduction of oxidative stress partially rescued DNA damage in C9ORF72 neurons and control neurons expressing (GR)(80) or (GR)(80)-induced cellular toxicity in flies. Moreover, interactome analysis revealed that (GR)(80) preferentially bound to mitochondrial ribosomal proteins and caused mitochondrial dysfunction. Thus, poly(GR) in C9ORF72 neurons compromises mitochondrial function and causes DNA damage in part by increasing oxidative stress, revealing another pathogenic mechanism in C9ORF72-related ALS and FTD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据