4.8 Article

Excitatory Cerebellar Nucleocortical Circuit Provides Internal Amplification during Associative Conditioning

期刊

NEURON
卷 89, 期 3, 页码 645-657

出版社

CELL PRESS
DOI: 10.1016/j.neuron.2016.01.008

关键词

-

资金

  1. Netherlands Organization for Scientific Research (NWO)-ALW
  2. MAGW
  3. ZON-MW
  4. NWO-VENI
  5. EUR-Fellowship
  6. NWO-VIDI
  7. Neuro-Basic
  8. ERC-advanced
  9. ERC-POC

向作者/读者索取更多资源

Closed-loop circuitries between cortical and subcortical regions can facilitate precision of output patterns, but the role of such networks in the cerebellum remains to be elucidated. Here, we characterize the role of internal feedback from the cerebellar nuclei to the cerebellar cortex in classical eyeblink conditioning. We find that excitatory output neurons in the interposed nucleus provide efference-copy signals via mossy fibers to the cerebellar cortical zones that belong to the same module, triggering monosynaptic responses in granule and Golgi cells and indirectly inhibiting Purkinje cells. Upon conditioning, the local density of nucleocortical mossy fiber terminals significantly increases. Optogenetic activation and inhibition of nucleocortical fibers in conditioned animals increases and decreases the amplitude of learned eyeblink responses, respectively. Our data show that the excitatory nucleocortical closed-loop circuitry of the cerebellum relays a corollary discharge of premotor signals and suggests an amplifying role of this circuitry in controlling associative motor learning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据