4.7 Article

Improved determination of the myelin water fraction in human brain using magnetic resonance imaging through Bayesian analysis of mcDESPOT

期刊

NEUROIMAGE
卷 127, 期 -, 页码 456-471

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2015.10.034

关键词

mcDESPOT; Myelin water fraction; Bayesian analysis; Stochastic region contraction algorithm; Nonlinear least squares; Brain

资金

  1. NIH, National Institute on Aging

向作者/读者索取更多资源

Myelin water fraction (MWF) mapping with magnetic resonance imaging has led to the ability to directly observe myelination and demyelination in both the developing brain and in disease. Multicomponent driven equilibrium single pulse observation of T-1 and T-2 (mcDESPOT) has been proposed as a rapid approach for multicomponent relaxometry and has been applied to map MWF in the human brain. However, even for the simplest two-pool signal model consisting of myelin-associated and non-myelin-associated water, the dimensionality of the parameter space for obtaining MWF estimates remains high. This renders parameter estimation difficult, especially at low-to-moderate signal-to-noise ratios (SNRs), due to the presence of local minima and the flatness of the fit residual energy surface used for parameter determination using conventional nonlinear least squares (NLLS)-based algorithms. In this study, we introduce three Bayesian approaches for analysis of the mcDESPOT signal model to determine MWF. Given the high-dimensional nature of the mcDESPOT signal model, and, therefore the high-dimensional marginalizations over nuisance parameters needed to derive the posterior probability distribution of the MWF, the Bayesian analyses introduced here use different approaches to reduce the dimensionality of the parameter space. The first approach uses normalization by average signal amplitude, and assumes that noise can be accurately estimated from signal-free regions of the image. The second approach likewise uses average amplitude normalization, but incorporates a full treatment of noise as an unknown variable through marginalization. The third approach does not use amplitude normalization and incorporates marginalization over both noise and signal amplitude. Through extensive Monte Carlo numerical simulations and analysis of in vivo human brain datasets exhibiting a range of SNR and spatial resolution, we demonstrated markedly improved accuracy and precision in the estimation of MWF using these Bayesian methods as compared to the stochastic region contraction (SRC) implementation of NLLS. Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据