4.4 Article

Downregulation of neuronal vasoactive intestinal polypeptide in Parkinson's disease and chronic constipation

期刊

NEUROGASTROENTEROLOGY AND MOTILITY
卷 29, 期 5, 页码 -

出版社

WILEY
DOI: 10.1111/nmo.12995

关键词

anorectal manometry; cholinergic neurons; secretomotor neurons; slow transit constipation

资金

  1. Italian Ministry of Public Health [RER2009-Ita-MNGIE]
  2. Italian Ministry of University and Research [PRIN/COFIN2009MFSXNZ_002]
  3. Telethon grant [GGP15171]
  4. Fondazione del Monte di Bologna e Ravenna, Bologna, Italy
  5. NIH [P30 DK 41301, DK55530]

向作者/读者索取更多资源

Background: Chronic constipation (CC) is a common and severe gastrointestinal complaint in Parkinson's disease (PD), but its pathogenesis remains poorly understood. This study evaluated functionally distinct submucosal neurons in relation to colonic motility and anorectal function in PD patients with constipation (PD/CC) vs both CC and controls. Methods: Twenty-nine PD/CC and 10 Rome III-defined CC patients were enrolled. Twenty asymptomatic age-sex matched subjects served as controls. Colonic transit time measurement and conventional anorectal manometry were evaluated in PD/CC and CC patients. Colonoscopy was performed in all three groups. Colonic submucosal whole mounts from PD/CC, CC, and controls were processed for immunohistochemistry with antibodies for vasoactive intestinal polypeptide (VIP) and peripheral choline acetyltransferase, markers for functionally distinct submucosal neurons. The mRNA expression of VIP and its receptors were also assessed. Key Results: Four subgroups of PD/CC patients were identified: delayed colonic transit plus altered anorectal manometry (65%); delayed colonic transit (13%); altered manometric pattern (13%); and no transit and manometric impairment (9%). There were no differences in the number of neurons/ganglion between PD/CC vs CC or vs controls. A reduced number of submucosal neurons containing VIP immunoreactivity was found in PD/CC vs controls (P<.05). VIP,VIPR1, and VIPR2 mRNA expression was significantly reduced in PD/CC vs CC and controls (P<.05). Conclusions and Inferences: Colonic motor and rectal sensory functions are impaired in most PD/CC patients. These abnormalities are associated with a decreased VIP expression in submucosal neurons. Both sensory-motor abnormalities and neurally mediated motor and secretory mechanisms are likely to contribute to PD/CC pathophysiology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据