4.5 Article

DNA Melting and Genotoxicity Induced by Silver Nanoparticles and Graphene

期刊

CHEMICAL RESEARCH IN TOXICOLOGY
卷 28, 期 5, 页码 1023-1035

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrestox.5b00052

关键词

-

资金

  1. South Australian Collaboration Pathway Program grant (International Research Cluster for Nanosafety)
  2. Office of Chief Executive at CSIRO

向作者/读者索取更多资源

We have revealed a connection between DNA-nanoparticle (NP) binding and in vitro DNA damage induced by citrate- and branched polyethylenimine-coated silver nanoparticles (c-AgNPs and b-AgNPs) as well as graphene Oxide (GO) nanosheets. All three types of nanostructures triggered an early onset of DNA melting, where the extent of the melting point shift depends upon both the type and concentration of the NPs. Specifically, at a DNA/NP weight ratio of 1.1/1, the melting temperature of lambda DNA dropped from 94 degrees C down to 76 degrees C, 60 degrees C, and room temperature for GO, c-AgNPs and b-AgNPs, respectively. Consistently, dynamic light scattering revealed that the largest changes in DNA hydrodynamic size were also associated with the binding of b-AgNPs. Upon introduction to cells, b-AgNPs also exhibited the highest cytotoxicity, at the half-maximal inhibitory (IC50) concentrations of 3.2, 2.9, and 5.2 mg/L for B and T-lymphocyte cell lines and primary lymphocytes, compared to the values of 13.4, 122, and 12.5 mg/L for c-AgNPs and 331, 251, and 120 mg/L for GO nanosheets, respectively. At cytotoxic concentrations, all NPs elicited elevated genotoxicities via the increased number of micronuclei in the lymphocyte cells. However, b-AgNPs also induced micronuclei at subtoxic concentrations starting from 0.1 mg/L, likely due to their stronger cellular adhesion and internalization, as well as their subsequent interference with normal DNA synthesis or chromosome segregation during the cell cycle. This study facilitates our understanding of the effects of NP chemical composition, surface charge, and morphology on DNA stability and genotoxicity, with implications ranging from nanotoxicology to nanobiotechnology and nanomedicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据