4.5 Article

Nootropic potential of Ashwagandha leaves: Beyond traditional root extracts

期刊

NEUROCHEMISTRY INTERNATIONAL
卷 95, 期 -, 页码 109-118

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuint.2015.09.001

关键词

Ashwagandha; Neuroregeneration; Neuroprotection; Anti-stress; Anti-cancer

资金

  1. DAILAB-STAR Program, National Institute of Advanced Industrial Science & Technology (AIST), Japan

向作者/读者索取更多资源

Rapidly increasing aging population and environmental stressors are the two main global concerns of the modern society. These have brought in light rapidly increasing incidence of a variety of pathological conditions including brain tumors, neurodegenerative & neuropsychiatric disorders, and new challenges for their treatment. The overlapping symptoms, complex etiology and lack of full understanding of the brain structure and function to-date further complicate these tasks. On the other hand, several herbal reagents with a long history of their use have been asserted to possess neurodifferentiation, neuroregenerative and neuroprotective potentials, and hence been recommended as supplement to enhance and maintain brain health and function. Although they have been claimed to function by holistic approach resulting in maintaining body homeostasis and brain health, there are not enough laboratory studies in support to these and mechanism(s) of such beneficial activities remain largely undefined. One such herb is Ashwagandha, also called Queen of Ayurveda for its popular use in Indian traditional home medicine because of its extensive benefits including anticancer, anti-stress and remedial potential for aging and neurodegenerative pathologies. However, active principles and underlying mechanism(s) of action remain largely unknown. Here we provide a review on the effects of Ashwagandha extracts and active principles, and underlying molecular mechanism(s) for brain pathologies. We highlight our findings on the nootropic potential of Ashwagandha leaves. The effects of Ashwagandha leaf extracts are multidimensional ranging from differentiation of neuroblastoma and glioma cells, reversal of Alzheimer and Parkinson's pathologies, protection against environmental neurotoxins and enhancement of memory. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据