4.5 Article

Aging is associated with dimerization and inactivation of the brain-enriched tyrosine phosphatase STEP

期刊

NEUROBIOLOGY OF AGING
卷 41, 期 -, 页码 25-38

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.neurobiolaging.2016.02.004

关键词

Tyrosine phosphatase; STEP; Dimerization; Aging; Glutathione; N-acetyl cysteine

资金

  1. National Institutes of Health [NS059962, NS083914]

向作者/读者索取更多资源

The STriatal-Enriched tyrosine Phosphatase (STEP) is involved in the etiology of several age-associated neurologic disorders linked to oxidative stress and is also known to play a role in neuroprotection by modulating glutamatergic transmission. However, the possible effect of aging on STEP level and activity in the brain is still unclear. In this study, using young (1 month), adult (4 months), and aged (18 months) rats, we show that aging is associated with increase in dimerization and loss of activity of STEP. Increased dimerization of STEP is primarily observed in the cortex and hippocampus and is associated with depletion of both reduced and total glutathione levels, suggesting an increase in oxidative stress. Consistent with this interpretation, studies in cell culture models of glutathione depletion and oxidative stress also demonstrate formation of dimers and higher order oligomers of STEP that involve intermolecular disulfide bond formation between multiple cysteine residues. Conversely, administration of N-acetyl cysteine, a major antioxidant that enhances glutathione biosynthesis, attenuates STEP dimerization both in the cortex and hippocampus. The findings indicate that loss of this intrinsic protective response pathway with age-dependent increase in oxidative stress may be a contributing factor for the susceptibility of the brain to age-associated neurologic disorders. (C) 2016 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据