4.5 Article

Effect of zinc oxide surface treatment concentration and nanofiller loading on the flexural properties of unsaturated polyester/ kenaf nanocomposites

期刊

HELIYON
卷 9, 期 9, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.heliyon.2023.e20051

关键词

Natural fiber; Nanohybrid; Surface enhancement; Nanomaterial

向作者/读者索取更多资源

This study aimed to enhance the flexural properties of unsaturated polyester/kenaf fiber nanocomposites by using zinc oxide nanoparticles for surface treatment. The findings showed that the addition of ZnONPs significantly improved the performance of the composites, with 2% being the optimal loading, and surface treatment with ZnONPs resulted in kenaf fibers with improved flexural properties.
Due to environmental concerns and budgetary constraints associated with synthetic fibers, natural fibers (NFr) are becoming increasingly popular as reinforcement in polymer composites (PCs) for structural components and construction materials. The surface treatment (ST) method is a well-established technique for enhancing the strength of interfacial bonding between NFr and the polymer matrix (PM). As a result, this research aims to determine the effect of ST with zinc oxide nanoparticles (ZnONPs) on the flexural properties of unsaturated polyester (UPE)/kenaf fiber (KF) nanocomposites. The hand lay-up technique was employed to produce KF-reinforced un-saturated polyester composites (KF/UPE) for this investigation. UPE/KF-ZnONPs composites were made with varying NFr loadings (weight percent), ranging from 10 to 40%. KF was treated with five distinct amounts of ZnONPs (from 1 to 5% weight percent). According to the findings of the investigation, the composite samples incorporating ZnONPs displayed superior optimum flexural properties compared to the untreated KF composite. It was found that 2% ZnONPs was optimal, and ST with ZnONPs could produce robust KF with improved flexural properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据