4.5 Article

Synthesis, characterization, and antiparasitic effects of zinc oxide nanoparticles-eugenol nanosuspension against Toxoplasma gondii infection

期刊

HELIYON
卷 9, 期 8, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.heliyon.2023.e19295

关键词

Zinc oxid nanoparticles; Eugenol; ZnO@Eug NSus; Toxoplasma gondii; Antiparasitic activity

向作者/读者索取更多资源

In this study, zinc oxide nanoparticles coated with eugenol were synthesized and evaluated for their anti-parasitic activity against Toxoplasma gondii. The results showed that the nanoformulation demonstrated antiparasitic activity with minimal toxic effects and high efficiency in increasing the survival of infected mice.
Background: In this study, zinc oxide nanoparticles-coated with eugenol (ZnO@Eug) were synthesized and evaluated as a nanosuspension (NSus) formulation against Toxoplasma gondii in vitro and in vivo. Methods: An anti-Toxoplasma activity assay for ZnO@Eug NSus was conducted in vitro, ex vivo, and in vivo. FTIR spectroscopy confirmed the formation of ZnO@Eug NSus by detecting several functional groups involved; EDX and SEM demonstrated the grain of ZnO-NPs embedded with Eug and compositional purity. Results: Surface charge (ZP) and size distribution (DLS) of ZnO@Eug NSus were determined to be -22.7 mV and 109.6 nm, respectively. According to the release kinetics, approximately 60% of the ZnO-NPs and Eug were released in the first 45 min. In the cytotoxicity assay, ZnO-NPs, Eug, and ZnO@Eug NSus had IC50 values of 71.85, 22.39, and 2.02 mg/mL, respectively. The therapeutic efficacy of ZnO@Eug against T. gondii was 56.3%, which was not significantly different from that of spiramycin (58.9%) (Positive-control). The tissue tachyzoites in the liver, spleen, and peritoneum were less than 50% in groups treated with Eug, spiramycin, and ZnO@Eug NSus compared to the control. ZnO@Eug-treated groups showed a survival rate of up to 13 days. Conclusions: The ZnO@Eug NSus demonstrated antiparasitic activity against T. gondii with minimal toxic effects and high efficiency in increasing the survival of infected mice. The nanoformulations of ZnO-NPs incorporated with Eug could, in the future, be considered for treating toxoplasmosis in humans and animals if a detailed study was conducted to determine the precise dose and measure side effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据