4.5 Article

Providing an approach to analyze the risk of central oxygen tanks in hospitals during the COVID-19 pandemic

期刊

HELIYON
卷 9, 期 8, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.heliyon.2023.e18736

关键词

Central oxygen tanks; Hospitals; COVID-19 pandemic; Risk assessment

向作者/读者索取更多资源

This study presents a new and comprehensive approach to oxygen tanks in hospitals during the COVID-19 pandemic, using trapezoidal fuzzy numbers to calculate failure rates and analyzing them through Bayesian Network, deductive and inductive reasoning, and sensitivity analysis. The results showed that human error had the highest probability in the fault tree, and using FBN could lower the probability of oxygen leakage. Basic events 10, 11, and 16 were the most important in the oxygen leakage event, and updating guidelines, fixing defects in inspection, and testing related equipment can improve the reliability of the oxygen supply system.
The central oxygen unit of hospitals is considered a high-risk unit, requiring high safety standards to maintain the integrity of the system during the COVID-19 pandemic. The linear reasoning assumption of conventional risk analysis methods cannot adequately describe these modern systems, which are characterized by tight connections and complex interactions between technical, human, and organizational aspects. Therefore, this study presents a new and comprehensive approach to oxygen tanks in hospitals during the COVID-19 pandemic. In this study, trapezoidal fuzzy numbers were used to calculate failure rates. After determining the probability of basic events (BEs), intermediate events (IE), and top event (TE) with fuzzy logic and transferring it into Bayesian Network (BN), deductive and inductive reasoning, and sensitivity analysis were performed using RoV in GeNIe software. The results of the case study showed that the IE of Human Error had the highest probability of fuzzy fault tree (FFT) and the probability of oxygen leakage was lower using FBN than FFT. According to the results, BE16 (failure to use standard and updated instructions) and BE12 (defects in the inspection and testing program of tank devices) had the highest posterior probability, while based on the FFT results, BE4 (defects in the external coating system of the tank) and, BE3 (Corrosive environment (acidity state)) had the least probability. According to the sensitivity analysis, basic events 10, 11, and 16 were the most important in the oxygen leakage event with a very small difference, which was almost in line with the results of posterior FBN (FBNPO). Updating the existing guidelines, fixing defects in the inspection of all types of tank gauges, and testing related equipment can greatly help the reliability of these tanks. Root cause analysis of these events provides opportunities for prevention and emergency response in critical situations, such as the COVID-19 pandemic.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据