4.5 Article

Urinary microbiota and serum metabolite analysis in patients with diabetic kidney disease

期刊

HELIYON
卷 9, 期 8, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.heliyon.2023.e17040

关键词

Diabetic kidney disease; Urinary microbiota; Serum metabolite arginine; Proline metabolism

向作者/读者索取更多资源

By analyzing the microbiota and serum metabolites in urine samples from patients with diabetic kidney disease (DKD), it was found that DKD patients had a different urinary microbiota compared to the healthy controls, with the most abundant microbiota being Proteobacteria and Acidobacteria. Short-chain fatty acids and protein-bound uremic toxins were shown to be specific to DKD. Furthermore, the study revealed that the metabolism of arginine and proline may play a major role in the regulation of DKD.
Background: Diabetic kidney disease (DKD) is a common and potentially fatal consequence of diabetes. Chronic renal failure or end-stage renal disease may result over time. Numerous studies have demonstrated the function of the microbiota in health and disease. The use of advanced urine culture techniques revealed the presence of resident microbiota in the urinary tract, undermining the idea of urine sterility. Studies have demonstrated that the urine microbiota is related with urological illnesses; nevertheless, the fundamental mechanisms by which the urinary microbiota influences the incidence and progression of DKD remain unclear. The purpose of this research was to describe key characteristics of the patients with DKD urinary microbiota in order to facilitate the development of diagnostic and therapeutic for DKD.Methods: We evaluated the structure and composition of the microbiota extracted from urine samples taken from DKD patients (n = 19) and matched healthy controls (n = 15) using 16S rRNA gene sequencing. Meanwhile, serum metabolite profiles were compared using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Associations between clinical charac-teristics, urine microbiota, and serum metabolites were also examined. Finally, the interaction between urine microbiota and serum metabolites was clarified based on differential metabolite abundance analysis. Results: The findings indicated that the DKD had a distinct urinary microbiota from the healthy controls (HC). Taxonomic investigations indicated that the DKD microbiome had less alpha di-versity than a control group. Proteobacteria and Acidobacteria phyla increased in the DKD, while Firmicutes and Bacteroidetes decreased significantly (P < 0.05). Acidobacteria was the most prevalent microbiota in the DKD, as determined by the Linear discriminant analysis Effect Size (LEfSe) plot. Changes in the urinary microbiota of DKD also had an effect on the makeup of metabolites. Short-chain fatty acids (SCFAs) and protein-bound uremic toxins (PBUTs) were shown to be specific. Then we discovered that arginine and proline metabolism was the primary mechanism involved in the regulation of diabetic kidney disease.Conclusions: This study placed the urinary microbiota and serum metabolite of DKD patients into a functional framework and identified the most abundant microbiota in DKD (Proteobacteria and Acidobacteria). Arginine metabolites may have a major effect on DKD patients, which correlated with the progression of DKD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据