4.5 Article

Arthroscopic knots: Suture and knot characterisation of modern polyblend suture materials

期刊

HELIYON
卷 9, 期 9, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.heliyon.2023.e19391

关键词

Arthroscopic knots characterisation; Knots; Tensile strength of knots; Contemporary UHMWPE suture; Suture and knot characterisation and; orthopaedic surgery

向作者/读者索取更多资源

This study explores the relationship between the biophysical structure and function of modern suture materials, focusing on their ability to withstand surgical stress and how material properties affect knot stability. Different knot types have varied effects on the suture materials themselves.
Objective: The primary aim of this study was to explore the relationship between the biophysical structure and function of modern suture materials. Particularly the suture's ability to withstand the stressors of surgery and how the material properties affect knot stability. The secondary aim was to investigate the effect that different knots have on the suture material itself. This study builds on previous research assessing suture and knot characteristics but in modern Ultra High Molecular Weight Polyethylene (UHMWPE) materials currently in widespread clinical use in arthroscopic surgery.Methods: Three common UHMWPE sutures and one polyester suture were tested in both a dry and wet state using the Geelong, Nicky's, Surgeon's and Tautline knots. Tensile strength of knots was tested vertically at a 60 mm/min strain rate and 45 mm gauge length. Sutures were tied through a cannula around two 8 mm diameter circular bollards. Testing was conducted in a controlled environment temperature and humidity environment (20 +/- 2 degrees C, 65 +/- 2%).Results: No one knot type was optimal over all suture types. Mean tensile strength in both a dry and wet state and a low coefficient of variation (CV) in tensile strength in a wet state were considered as an indication of suitability. With Ethibond sutures this was the Geelong knot (CV:4.2%). With Orthocord sutures both the Geelong and Tautline knots (CV:4.2% and CV:11.9% respectively). With FiberWire sutures the Nickys and Tautline knots (CV:22.6% and CV:22.5% respectively). With ForceFiber sutures all four knots exhibited similar wet tensile strength with high variability showing that all should perform in a similar way invivo.Conclusions: This study demonstrates a statistically significant three-way interaction between polyblend suture materials, the knot and the environment. This has implications for knot security using the tested sutures in different environments, as one knot may not behave the same under all conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据