4.5 Article

Fluorescence sensing and adsorption kinetics of Gd-doped AgInS2 I-III-VI quantum dots - A case study of Ag plus ions interactions

期刊

HELIYON
卷 9, 期 8, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.heliyon.2023.e19020

关键词

Magneto -fluorescent; Quantum dots; Sensing; Adsorption

向作者/读者索取更多资源

This study presents the successful use of Gd-doped AgInS2 quantum dots with high Gd mole ratios for fluorescence detection and adsorption of Ag+ ions in water. The materials showed good fluorescence characteristics and adsorption properties under optimized conditions, and a combination of ion-exchange, electrostatic interaction, complexation, and diffusion processes was proposed as the adsorption mechanism.
The poor fluorescence properties of magneto-fluorescent paramagnetic-ion (Gd, Mn, or Co) doped I-III-VI quantum dots (QDs) at higher paramagnetic-ion doping concentrations have limited their use in magnetic-driven water-based applications. This work presents, for the first time, the use of stable magneto-fluorescent Gd-doped AgInS2 QDs at high Gd mole ratios of 16, 20, and 30 for the fluorescence detection and adsorption of Ag+ ions in water environments. The effect of pH, initial concentration, contact time, and adsorbent dosage were systematically evaluated. The AgInS2 QDs with the least Gd mole ratio (16) exhibited the best fluorescence characteristics (LOD = 0.88, R2 = 0.9549) while all materials showed good adsorption properties under optimized conditions (pH of 2, initial concentration of 30 ppm, contact time of 10 min and adsorbent dosage of 0.02 g) and a pseudo 2nd order reaction was followed. The adsorption mechanism was proposed to be a combination of ion-exchange, electrostatic interaction, complexation, and diffusion processes. Application in environmental wastewater samples revealed complete removal of Ag + ions alongside Ti2+ Pb2+, Ni2+, Cr3+, and Zn2+ ions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据