4.6 Article

PT-Informer: A Deep Learning Framework for Nuclear Steam Turbine Fault Diagnosis and Prediction

期刊

MACHINES
卷 11, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/machines11080846

关键词

fault diagnosis; fault prediction; PCA; t-SNE; deep learning; nuclear steam turbine

向作者/读者索取更多资源

This paper proposes PT-Informer, a deep learning framework for fault prediction and detection in nuclear power plants. Unlike traditional approaches, PT-Informer extracts fault features from raw vibration signals and achieves ultra-real-time fault prediction. Experimental results demonstrate that PT-Informer outperforms traditional models in terms of prediction accuracy and fault classification.
The health status of equipment is of paramount importance during the operation of nuclear power plants. The occurrence of faults not only leads to significant economic losses but also poses risks of casualties and even major accidents, with unimaginable consequences. This paper proposed a deep learning framework called PT-Informer for fault prediction, detection, and localization in order to address the challenges of online monitoring of the operating health of nuclear steam turbines. Unlike traditional approaches that involve separate design and execution of feature extraction for fault diagnosis, classification, and prediction, PT-Informer aims to extract fault features from the raw vibration signal and perform ultra-real-time fault prediction prior to their occurrence. Specifically, the encoding and decoding structure in PT-Informer ensures the capture of temporal dependencies between input features, enabling accurate time series prediction. Subsequently, the predicted data are utilized for fault detection using PCA in the PT-Informer framework, aiming to assess the likelihood of equipment failure in the near future. In the event of potential future failures, t-SNE is utilized to project high-dimensional data into a lower-dimensional space, facilitating the identification of clusters or groups associated with different fault types or operational conditions, thereby achieving precise fault localization. Experimental results on a nuclear steam turbine rotor demonstrate that PT-Informer outperformed the traditional GRU with a 4.94% improvement in R2 performance for prediction. Furthermore, compared to the conventional model, the proposed PT-Informer enhanced the fault classification accuracy of the nuclear steam turbine rotor from 97.4% to 99.6%. Various comparative experiments provide strong evidence for the effectiveness of PT-Informer framework in the diagnosis and prediction of nuclear steam turbine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据