4.7 Article

Exploring the Bioprotective Potential of Halophilic Bacteria against Major Postharvest Fungal Pathogens of Citrus Fruit Penicillium digitatum and Penicillium italicum

期刊

HORTICULTURAE
卷 9, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/horticulturae9080922

关键词

citrus fruits; Penicillium italicum; Penicillium digitatum; halophilic bacteria; postharvest disease control

向作者/读者索取更多资源

This study identified promising halophilic bacteria from diverse saline ecosystems for controlling postharvest diseases in citrus fruits. Two strains, Bacillus amyloliquefaciens EAM1 and B. amyloliquefaciens ER2, demonstrated exceptional inhibitory effects against green and blue citrus molds, highlighting their potential as biocontrol agents.
Citrus fruits are vulnerable to green mold (caused by Penicillium digitatum) and blue mold (caused by Penicillium italicum) during storage, posing significant challenges to the industry. Therefore, biological control utilizing antagonistic bacteria has emerged as a dependable strategy for managing postharvest diseases. In this study, halophilic bacterial isolates were carefully selected from diverse saline ecosystems, including the Dead Sea, the Agadir Sea, the Rabat Sea, saline soil, and water of the Amassine Oued in Taounate, based on rigorous in vitro and in vivo antagonism bioassays. Out of 21 bacteria from different saline environments, 10 were chosen for further characterization based on the 16S rDNA gene. Notably, the EAM1 isolate demonstrated exceptional inhibitory effects, reaching a 90% inhibition rate against P. digitatum, while the ER2 isolate closely followed with an 89% inhibition rate against P. italicum. Furthermore, in bacterial supernatant experiments, six bacterial isolates effectively curbed the growth of P. digitatum, and three demonstrated efficacy against P. italicum development. In an in vivo trial spanning ten days of incubation, three highly effective isolates against P. digitatum displayed zero severity, and two of these isolates also demonstrated zero severity against P. italicum. Interestingly, a comparison of bacterial filtrates revealed that all isolates exhibited a severity level of over 50% against the pathogen causing green rot (P. digitatum), while the severity was lower than 50% for the supernatants of the two isolates used against P. italicum. In conclusion, this study highlights the promising role of halophilic bacteria, specifically Bacillus amyloliquefaciens EAM1 and B. amyloliquefaciens ER2, in controlling postharvest fruit pathogens. The findings shed light on the potential of utilizing these bioprotective agents to address the challenges posed by green and blue citrus molds, providing valuable insights for the citrus industry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据