4.6 Article

Corrosion performance of wire arc additively manufactured NAB alloy

期刊

NPJ MATERIALS DEGRADATION
卷 7, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41529-023-00405-x

关键词

-

向作者/读者索取更多资源

This study examined the corrosion performance of Nickel-aluminum bronzes (NAB) fabricated by wire arc additive manufacturing (WAAM) and casting methods, finding that WAAM samples showed superior corrosion resistance in chloride solution. Heat treatment also affected the microstructural characteristics and corrosion resistance of the NAB samples.
Nickel-aluminum bronzes (NAB) are vital alloys, known for biofouling resistance, crucial for marine and shipbuilding industries. This study examined corrosion performance of NAB samples fabricated by wire arc additive manufacturing (WAAM) in as-built and heat-treated conditions. Microstructural analysis revealed the WAAM-NAB parts primarily consisted of the alpha-phase (copper) and three types of kappa-phases: kappa II (spherical Fe3Al), kappa III (Ni-Al in lamellar shape) within the interdendritic areas, and iron-rich kappa IV particles dispersed throughout the matrix. In contrast, casting-produced NAB showed the formation of a rosette-like kappa I phase as well. Corrosion behavior comparisons between the two NAB fabrication methods were also assessed. The microstructural characterizations revealed a rise in the size of the kappa IV particles after heat-treated at 350 degrees C for 2 h (HT1). Heat treatment at 550 degrees C for 4 h (HT2) resulted in a needle-like kappa V, coarsening of kappa II, partial spheroidization of kappa III, and reduced kappa IV precipitation. When heat-treated to 675 degrees C for 6 h (HT3), kappa II and kappa V were coarsened, kappa III was completely spheroidized, and kappa IV precipitation was significantly reduced. These microstructural features in HT2 and HT3 conditions steeply decreased their corrosion resistance compared to the WAAM as-built part. The as-built WAAM sample showed superior corrosion resistance in chloride solution, attributed to fewer kappa-intermetallic phases and a finer microstructure. The kappa-phases, irrespective of morphology, act as the cathodic areas versus the alpha-dendritic matrix, fostering microgalvanic cell formation. Consequently, precipitation of all cathodic kappa-phases draws a higher galvanic current of the anodic alpha-phase, meaning a lower corrosion resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据