4.8 Article

High-Quality van der Waals Epitaxial CsPbBr3 Film Grown on Monolayer Graphene Covered TiO2 for High-Performance Solar Cells

期刊

ENERGY & ENVIRONMENTAL MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1002/eem2.12680

关键词

all-inorganic perovskite solar cells; buried interface modification; monolayer graphene; van der Waals epitaxial growth

向作者/读者索取更多资源

By introducing a monolayer graphene overlay on TiO2 substrates, higher-quality CsPbBr3 films with improved crystallinity and orientation have been obtained. A band bending at the graphene/perovskite interface enhances the electron extraction and reduces defects. Photovoltaic devices fabricated using these films exhibit high power conversion efficiency and stability.
Two-dimensional materials have been widely used to tune the growth and energy-level alignment of perovskites. However, their incomplete passivation and chaotic usage amounts are not conducive to the preparation of high-quality perovskite films. Herein, we succeeded in obtaining higher-quality CsPbBr3 films by introducing large-area monolayer graphene as a stable physical overlay on top of TiO2 substrates. Benefiting from the inert and atomic smooth graphene surface, the CsPbBr3 film grown on top by the van der Waal epitaxy has higher crystallinity, improved (100) orientation, and an average domain size of up to 1.22 mu m. Meanwhile, a strong downward band bending is observed at the graphene/perovskite interface, improving the electron extraction to the electron transport layers (ETL). As a result, perovskite film grown on graphene has lower photoluminescence (PL) intensity, shorter carrier lifetime, and fewer defects. Finally, a photovoltaic device based on epitaxy CsPbBr3 film is fabricated, exhibiting power conversion efficiency (PCE) of up to 10.64% and stability over 2000 h in the air.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据