4.7 Article

Resilient conductive membrane synthesized by in-situ polymerisation for wearable non-invasive electronics on moving appendages of cyborg insect

期刊

NPJ FLEXIBLE ELECTRONICS
卷 7, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41528-023-00274-z

关键词

-

向作者/读者索取更多资源

By combining insects with microcontrollers, cyborg insects have been developed for various practical applications by utilizing their high mobility and small size. However, the current cyborg insects rely on implanted electrodes which cause irreversible damage to their organs and muscles. In this study, a non-invasive method using conformal electrodes with in-situ polymerized ion-conducting and electron-conducting layers is developed to overcome these issues.
By leveraging their high mobility and small size, insects have been combined with microcontrollers to build up cyborg insects for various practical applications. Unfortunately, all current cyborg insects rely on implanted electrodes to control their movement, which causes irreversible damage to their organs and muscles. Here, we develop a non-invasive method for cyborg insects to address above issues, using a conformal electrode with an in-situ polymerized ion-conducting layer and an electron-conducting layer. The neural and locomotion responses to the electrical inductions verify the efficient communication between insects and controllers by the non-invasive method. The precise S line following of the cyborg insect further demonstrates its potential in practical navigation. The conformal non-invasive electrodes keep the intactness of the insects while controlling their motion. With the antennae, important olfactory organs of insects preserved, the cyborg insect, in the future, may be endowed with abilities to detect the surrounding environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据