4.5 Article

Inhibition of telomerase RNA decay rescues telomerase deficiency caused by dyskerin or PARN defects

期刊

NATURE STRUCTURAL & MOLECULAR BIOLOGY
卷 23, 期 4, 页码 286-292

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nsmb.3184

关键词

-

资金

  1. US National Institutes of Health [R01 GM45443, GM099705]
  2. Damon Runyon Cancer Research Foundation [DRG-2169-13]

向作者/读者索取更多资源

Mutations in the human telomerase RNA component (hTR), the telomerase ribonucleoprotein component dyskerin (DKC1) and the poly(A) RNase (PARN) can lead to reduced levels of hTR and to dyskeratosis congenita (DC). However, the enzymes and mechanisms responsible for hTR degradation are unknown. We demonstrate that defects in dyskerin binding lead to hTR degradation by PAPD5-mediated oligoadenylation, which promotes 3'-to-5' degradation by EXOSC10, as well as decapping and 5'-to-3' decay by the cytoplasmic DCP2 and XRN1 enzymes. PARN increased hTR levels by deadenylating hTR, thereby limiting its degradation by EXOSC10. Telomerase activity and proper hTR localization in dyskerin- or PARN-deficient cells were rescued by knockdown of DCP2 and/or EXOSC10. Prevention of hTR RNA decay also led to a rescue of localization of DC-associated hTR mutants. These results suggest that inhibition of RNA decay pathways might be a useful therapy for some telomere pathologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据