4.4 Review

All-carbon backbone aromatic polymers for proton exchange membranes

期刊

JOURNAL OF POLYMER SCIENCE
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1002/pol.20230405

关键词

all-carbon backbone aromatic polymers; chemical stability; proton conductivity; proton exchange membranes; structure-performance relationships

向作者/读者索取更多资源

This review summarizes the recent research progress on all-carbon backbone aromatic polymers, with a specific focus on synthesis strategies, structure-performance relationships, and applications in PEMs.
Proton exchange membranes (PEMs) play a crucial role in energy storage and conversion technologies such as fuel cells, redox flow batteries, and water electrolysis. Currently, perfluorosulfonic acid polymer (PFSA) membranes are the most commonly used PEM materials. However, PFSA membranes possess certain drawbacks, including the high dependence of proton conductivity on humidity, low glass transition temperatures, and complex synthesis processes. In recent decades, significant efforts have been dedicated to developing various alternative PEM materials, such as the sulfonated products of polyether ether ketone, poly(phenylene oxide), polysulfone, and polyimide. However, the backbones of these polymers often contain heteroatoms that are prone to breaking under practical working conditions, leading to reduced chemical stability. In contrast, all-carbon backbone aromatic polymers exhibit excellent chemical stability, thermal stability, and mechanical properties, as well as high proton conductivity upon incorporating suitable acidic groups, which makes them promising alternatives for PEM materials. This review aims to summarize the recent research progress about all-carbon backbone aromatic polymers, with a specific focus on synthesis strategies, structure-performance relationships, and applications in PEMs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据