4.4 Article

Transcriptome-based identification and functional characterization of iridoid synthase involved in monotropein biosynthesis in blueberry

期刊

PLANT DIRECT
卷 7, 期 7, 页码 -

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/pld3.512

关键词

(cultivated) blueberry; iridoid biosynthesis; iridoid synthase; monotropein; transcriptomics

向作者/读者索取更多资源

Blueberries are known for their nutritional quality and have been found to produce iridoids, which have health-promoting benefits. However, the genes involved in the biosynthesis of iridoids and their production in blueberries have not yet been fully understood.
Blueberries (Vaccinium spp.) are well known for their nutritional quality, and recent work has shown that Vaccinium spp. also produce iridoids, which are specialized metabolites with potent health-promoting benefits. The iridoid glycoside monotropein, which has anti-inflammatory and antinociceptive activities, has been detected in several wild blueberry species but in only a few cultivated highbush blueberry cultivars. How monotropein is produced in blueberry and the genes involved in its biosynthesis remain to be elucidated. Using a monotropein-positive (M+) and monotropein-negative (M-) cultivar of blueberry, we employed transcriptomics and comparative genomics to identify candidate genes in the blueberry iridoid biosynthetic pathway. Orthology analysis was completed using de novo transcript assemblies for both the M+ and M- blueberry cultivars along with the known iridoid-producing plant species Catharanthus roseus to identify putative genes involved in key steps in the early iridoid biosynthetic pathway. From the identified orthologs, we functionally characterized iridoid synthase (ISY), a key enzyme involved in formation of the iridoid scaffold, from both the M+ and M- cultivars. Detection of nepetalactol suggests that ISY from both the M+ and M- cultivars produce functional enzymes that catalyze the formation of iridoids. Transcript accumulation of the putative ISY gene did not correlate with monotropein production, suggesting other genes in the monotropein biosynthetic pathway may be more directly responsible for differential accumulation of the metabolite in blueberry. Mutual rank analysis revealed that ISY is co-expressed with UDP-glucuronosyltransferase, which encodes an enzyme downstream of the ISY step. Results from this study contribute new knowledge in our understanding of iridoid biosynthesis in blueberry and could lead to development of new cultivars with increased human health benefits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据