4.7 Article

Precise Short-Term Small-Area Sunshine Forecasting for Optimal Seedbed Scheduling in Plant Factories

期刊

AGRICULTURE-BASEL
卷 13, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/agriculture13091790

关键词

end-edge-cloud; machine learning; seedbed rotation; optimal scheduling; regional sunshine prediction

类别

向作者/读者索取更多资源

This study proposes a system to predict seedbed-sized sunshine using a cross-scale approach, aiming to improve the efficiency of photosynthesis in plant factories. The research utilizes a hybrid modeling algorithm to predict hourly sunshine and achieves uniform solar energy absorption through a dynamic seedbed scheduling scheme.
Photosynthesis is one of the key issues for vertical cultivation in plant factories, and efficient natural sunlight utilization requires predicting the light falling on each seedbed in a real-time manner. However, public weather services neither provide sunshine data nor meet spatial resolution requirement. Facing these short-term and small-area weather forecasting challenges, we propose a cross-scale approach to infer seedbed-sized areas of sunshine from the city-level public weather services, and then design a seedbed rotation scheduling system for optimal natural sunlight utilization. First, an end-edge-cloud coordinated computing architecture was employed to concurrently aggregate the multi-scale data from weather satellites to sunshine sensors in the plant factory. Second, the small area of sunshine deterministically depends on the meteorological data given a fixed environment, and this correlation was described by a hybrid mapping model, which combined the long short-term memory (LSTM) and gradient boosting decision tree (GBDT) algorithms to form the LSTM-GBDT hybrid prediction algorithm (LGHPA). By training the LGHPA with historical local sensory sunshine and the city-scale meteorological data, the hourly sunshine on a seedbed can be predicted from the public weather forecasting service. Finally, a dynamic seedbed scheduling scheme was constructed to provide uniform solar energy absorption according to the one-hour-ahead radiation estimation. Experiment results show that the hourly sunshine prediction error was less than 18.44% over a seasonal period and the deviation for different solar absorption by seedbeds with rotation capability is less than 7.1%. Consequently, it was demonstrated that the application of short-term, small-area sunshine forecasting improved the performance of seedbed rotation for uniformly absorbed solar radiation. The proposed method verifies the feasibility of precisely predicting small-area sunshine down to the seedbed scale by leveraging a model-based approach and a cloud-edge-end merged cybernetic computing paradigm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据