4.7 Article

A Low-Cost Microfluidic-Based Detection Device for Rapid Identification and Quantification of Biomarkers-Based on a Smartphone

期刊

BIOSENSORS-BASEL
卷 13, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/bios13070753

关键词

smartphone; fluorescence; glass capillary; biomarkers; RGB

向作者/读者索取更多资源

The sensitive and rapid detection of microsamples is crucial for early diagnosis of diseases. We developed a low-cost smartphone-based fluorescence detection device (Smartphone-BFDD) without precision equipment for rapid identification and quantification of biomarkers on glass capillary. The device combines microfluidic technology with RGB image analysis, effectively reducing the sample volume to 20 μL and detection time to only 30 min. This device provides potential applications for different biomarkers and offers wide use for rapid biochemical analysis in biomedical research.
The sensitive and rapid detection of microsamples is crucial for early diagnosis of diseases. The short response times and low sample volume requirements of microfluidic chips have shown great potential in early diagnosis, but there are still shortcomings such as complex preparation processes and high costs. We developed a low-cost smartphone-based fluorescence detection device (Smartphone-BFDD) without precision equipment for rapid identification and quantification of biomarkers on glass capillary. The device combines microfluidic technology with RGB image analysis, effectively reducing the sample volume to 20 & mu;L and detection time to only 30 min. For the sensitivity of the device, we constructed a standard sandwich immunoassay (antibody-antigen-antibody) in a glass capillary using the N-protein of SARS-CoV-2 as a biological model, realizing a low limit of detection (LOD, 40 ng mL(-1)). This device provides potential applications for different biomarkers and offers wide use for rapid biochemical analysis in biomedical research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据