4.7 Article

Surface Functionalised Optical Fibre for Detection of Hydrogen Sulphide

期刊

BIOSENSORS-BASEL
卷 13, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/bios13110949

关键词

hydrosulphide ion detection; 1,8-naphthalimide; turn-on fluorescent probes; optical fibre; fluorescence intensity enhancement; X-ray photoelectron spectroscopy

向作者/读者索取更多资源

Dysregulated production of hydrogen sulphide in the human body has been associated with various diseases including cancer, underlining the importance of accurate detection of this molecule. In this study, researchers developed a method to detect hydrogen sulphide using fluorescence-emission enhancement and optical fibres. The results showed a fast response time and pH insensitivity of the fluorophore coated on the optical fibre, suggesting the potential for developing a sensing system for hydrogen sulphide detection.
Dysregulated production of hydrogen sulphide in the human body has been associated with various diseases including cancer, underlining the importance of accurate detection of this molecule. Here, we report the detection of hydrogen sulphide using fluorescence-emission enhancement of two 1,8-naphthalimide fluorescent probes with an azide moiety in position 4. One probe, serving as a control, featured a methoxyethyl moiety through the imide to evaluate its effectiveness for hydrogen sulphide detection, while the other probe was modified with (3-aminopropyl)triethoxysilane (APTES) to enable direct covalent attachment to an optical fibre tip. We coated the optical fibre tip relatively homogeneously with the APTES-azide fluorophore, as confirmed via x-ray photoelectron spectroscopy (XPS). The absorption and fluorescence responses of the control fluorophore free in PBS were analysed using UV-Vis and fluorescence spectrophotometry, while the fluorescence emission of the APTES-azide fluorophore-coated optical fibres was examined using a simple, low-cost optical fibre-based setup. Both fluorescent probes exhibited a significant increase (more than double the initial value) in fluorescence emission upon the addition of HS- when excited with 405 nm. However, the fluorescence enhancement of the coated optical fibres demonstrated a much faster response time of 2 min (time for the fluorescence intensity to reach 90% of its maximum value) compared to the control fluorophore in solution (30 min). Additionally, the temporal evolution of fluorescence intensity of the fluorophore coated on the optical fibre was studied at two pH values (7.4 and 6.4), demonstrating a reasonable overlap and confirming the compound pH insensitivity within this range. The promising results from this study indicate the potential for developing an optical fibre-based sensing system for HS- detection using the synthesised fluorophore, which could have significant applications in health monitoring and disease detection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据