4.5 Article

A Versatile Strategy for Genetic Manipulation of Cajal-Retzius Cells in the Adult Mouse Hippocampus

期刊

ENEURO
卷 10, 期 10, 页码 -

出版社

SOC NEUROSCIENCE
DOI: 10.1523/ENEURO.0054-23.2023

关键词

adeno-associated virus; adult hippocampus; Cajal-Retzius cells; DNp73-Cre; genetic modification; neonatal intracerebroventricular injection

向作者/读者索取更多资源

Cajal-Retzius (CR) cells are transient neurons that have long-lasting effects on the structure and circuitry of the neocortex and hippocampus. Contrary to previous assumptions, a significant portion of these cells persist in the hippocampus throughout adulthood in rodents. The role of these surviving CR cells in the adult hippocampus is largely unknown, partly due to a lack of suitable tools to study their functions.
Cajal-Retzius (CR) cells are transient neurons with long-lasting effects on the architecture and circuitry of the neocortex and hippocampus. Contrary to the prevailing assumption that CR cells completely disappear in rodents shortly after birth, a substantial portion of these cells persist in the hippocampus throughout adulthood. The role of these surviving CR cells in the adult hippocampus is largely unknown, partly because of the paucity of suitable tools to dissect their functions in the adult versus the embryonic brain. Here, we show that genetic crosses of the DNp73-Cre mouse line, widely used to target CR cells, to reporter mice induce reporter expression not only in CR cells, but also progressively in postnatal dentate gyrus granule neurons. Such a lack of specificity may confound studies of CR cell function in the adult hippocampus. To overcome this, we devise a method that not only leverages the temporary CR cell-targeting specificity of the DNp73-Cre mice before the first postnatal week, but also capitalizes on the simplicity and effectiveness of freehand neonatal intracerebroventricular injection of adeno-associated virus. We achieve robust Cre-mediated recombination that remains largely restricted to hippocampal CR cells from early postnatal age to adulthood. We further demonstrate the utility of this method to manipulate neuronal activity of CR cells in the adult hippocampus. This versatile and scalable strategy will facilitate experiments of CR cell-specific gene knockdown and/or overexpression, lineage tracing, and neural activity modulation in the postnatal and adult brain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据