4.7 Article

Molecular architecture of PANI/V2O5/MnO2 composite designed for hydrogen evolution reaction

期刊

SURFACES AND INTERFACES
卷 41, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.surfin.2023.103221

关键词

Energy production; Water splitting; HER; Polyaniline composites

向作者/读者索取更多资源

Scientists have synthesized a composite material using mixed metal oxides and polyaniline, which exhibits excellent electrocatalytic performance and stability for hydrogen evolution reaction.
An ever increasing demand for energy has mandated scientists towards exploring innovative and environmentally friendly energy production techniques that can meet the needs of human beings and the world at large. Among the various techniques, hydrogen evolution reaction (HER) is a cost-effective and efficient method that produces hydrogen, a better fuel, for meeting our energy requirements. The large surface area, good redox capacity, high electroactivity, and tunable bandgap of polyaniline (PANI) makes it a preferred candidate for various energy-related applications. Incorporating mixed metal oxides into a polymer enhances its catalytic activities and can be used as an electrocatalyst for HER. In situ chemical oxidative polymerization method has been carried out to synthesize PANI/V2O5/MnO2 composite. The characterization studies of PANI/V2O5/MnO2 composite are done using XRD, FT-IR, BET, XPS, and FE-SEM analysis. The PANI/V2O5/MnO2 composite is used for linear sweep voltammetry studies and shows that it acts as an efficient electrocatalyst which gives an overpotential of 130 mV at 10 mA/cm2. The high electrocatalytic activity of the composite is due to the better surface phenomenon that is enhanced by the high porosity and surface area. The electrochemical impedance spectroscopy also shows lower charge transfer resistance for the PANI/V2O5/MnO2, confirming its excellent electroactivity. 90% of the current density is retained even after 7200 seconds, validating its stability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据