4.7 Article

Effect of electrostatic force and thermal radiation of viscoelastic nanofluid flow with motile microorganisms surrounded by PST and PHF: Bacillus anthracis in biological applications

期刊

出版社

ELSEVIER
DOI: 10.1016/j.csite.2023.103691

关键词

Heat flux radiative; Lorentz forces; Brownian motion; Motile-microorganism; Nanofluid flow; Bio-convection; Numerically; nth order chemical reaction

向作者/读者索取更多资源

This study examines the potential of bacteria for targeted drug delivery and investigates the effects of nanofluid flow on porous surfaces. The results show that increasing Brownian motion and thermophoresis parameters can enhance temperature profiles and the thickness of the thermal boundary layer.
Current studies have a significant application in various fields; motile microorganism, such as bacteria, can be used for targeted drug delivery. This is because they can be engineered to carry drugs to specific locations in the body. For example, bacteria can be modified to express genes that code for targeting ligands, which are molecules that bind to specific receptors on cells. This could help to prevent the bacteria from multiplying and causing disease. The main aim of the current work is to perform the numerical analysis of three-dimensional radiative, steady visco-elastic nanofluids flow towards an exponentially stretchable porous surface. The impact of nth-order chemical reaction and motile microbes are also disclosed looks at how multiple slips affect the Buongiorno model for magnetohydrodynamic viscoelastic nanofluids with radiation across a permeable stretched sheet. The appropriate suitable are used to transform nonlinear partial differential equations into ordinary differential equations. The numerical solution of the resulting system of equations is handled numerically by employing the bvp4c algorithm built-in MATLAB Software which comes of three-stage Lobatto IIIa formula. Dimensionless values such as temperature, concentration, velocity, and the non-Newtonian nano-fluid density profile are explored, as are non-dimensional numbers such as the local Nusselt, local friction coefficient, Sherwood, and motile microbe. Present results signifies enhancement in the temperature profiles as well as the thickness of the thermal boundary layer by increasing Brownian motion (Nb) and thermophoresis parameters (Nt), whereas decrement is noted against the viscoelastic parameter (K). As the value of the magnetic parameter ranges 0.0 <= M <= 0.2 the relative increment noted in skin friction coefficient is about 1.9 %, while decrement is found in curves of velocity field. Our findings are compared with the data available in the literature and found to be in good consensus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据