4.7 Article

Improving the efficiency of solar-driven trigeneration systems using nanofluid coolants

期刊

出版社

ELSEVIER
DOI: 10.1016/j.csite.2023.103459

关键词

Energy efficiency; Nanofluids; Solar collector; Thermal energy; Trigeneration

向作者/读者索取更多资源

This article provides a technical and economic assessment of currently available trigeneration and cogeneration plants, and presents the thermodynamic analysis of a trigeneration plant using a solar collector as the heat source.
This article provides a technical and economic assessment of the currently available trigeneration and cogeneration plants to produce heat, vapour, electricity, and cold. A thermodynamic analysis of a trigeneration plant that uses a solar collector as a heat source has been carried out. The results of experimental studies have shown the possibility of reducing the cost of the refrigeration cycle to 11.5%. Mathematical models of refrigerating and thermal cycles in trigeneration units are presented. The following optimal parameters of the trigeneration unit are established. The share of the solar radiation component in the process conditions was 50%. The efficiency of the solar collector was 83%, the efficiency of the cold generator was 65%, and the electric generator reached 60%. The pressure in the system ranged from 9 to 11 bar, and the operating temperature of the solar collector was 280 ... 380 K. Statistical evaluation of the results showed satisfactory convergence of experimental and theoretical data. The Pearson criterion was chi 2 = 0.87, Student's t-test 0.07 ... 0.09, the statistical significance of results p <= 0.005.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据