4.7 Article

Identifying the serious clinical outcomes of adverse reactions to drugs by a multi-task deep learning framework

期刊

COMMUNICATIONS BIOLOGY
卷 6, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s42003-023-05243-w

关键词

-

向作者/读者索取更多资源

Adverse drug reactions have a direct impact on human health. Computational methods, such as the deep learning framework GCAP, offer promising alternatives for predicting the seriousness of clinical outcomes resulting from adverse reactions to drugs. GCAP can effectively predict whether adverse reactions cause serious clinical outcomes and infer the corresponding classes of seriousness.
Adverse Drug Reactions (ADRs) have a direct impact on human health. As continuous pharmacovigilance and drug monitoring prove to be costly and time-consuming, computational methods have emerged as promising alternatives. However, most existing computational methods primarily focus on predicting whether or not the drug is associated with an adverse reaction and do not consider the core issue of drug benefit-risk assessment-whether the treatment outcome is serious when adverse drug reactions occur. To this end, we categorize serious clinical outcomes caused by adverse reactions to drugs into seven distinct classes and present a deep learning framework, so-called GCAP, for predicting the seriousness of clinical outcomes of adverse reactions to drugs. GCAP has two tasks: one is to predict whether adverse reactions to drugs cause serious clinical outcomes, and the other is to infer the corresponding classes of serious clinical outcomes. Experimental results demonstrate that our method is a powerful and robust framework with high extendibility. GCAP can serve as a useful tool to successfully address the challenge of predicting the seriousness of clinical outcomes stemming from adverse reactions to drugs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据