4.6 Article

Superflux of an organic adlayer towards its local reactive immobilization

期刊

COMMUNICATIONS CHEMISTRY
卷 6, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s42004-023-01020-2

关键词

-

向作者/读者索取更多资源

This study demonstrates the mass transport characteristics of the natural VOC isoprene on surfaces, which can quickly fill low-concentration areas at a fast speed, providing a stable flow of resource material for focused electron beam synthesis. This has significant implications for nanofabrication.
On-surface mass transport is the key process determining the kinetics and dynamics of on-surface reactions, including the formation of nanostructures, catalysis, or surface cleaning. Volatile organic compounds (VOC) localized on a majority of surfaces dramatically change their properties and act as reactants in many surface reactions. However, the fundamental question How far and how fast can the molecules travel on the surface to react? remains open. Here we show that isoprene, the natural VOC, can travel similar to 1 mu m s(-1), i.e., centimeters per day, quickly filling low-concentration areas if they become locally depleted. We show that VOC have high surface adhesion on ceramic surfaces and simultaneously high mobility providing a steady flow of resource material for focused electron beam synthesis, which is applicable also on rough or porous surfaces. Our work established the mass transport of reactants on solid surfaces and explored a route for nanofabrication using the natural VOC layer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据