4.6 Article

A facile alternative strategy of upcycling mixed plastic waste into vitrimers

期刊

COMMUNICATIONS CHEMISTRY
卷 6, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s42004-023-00949-8

关键词

-

向作者/读者索取更多资源

Chemical depolymerization is a promising method for recycling plastic waste, but it requires a lot of energy and faces challenges in purification. In this study, the authors demonstrate the upcycling of mixed plastic waste through a reprocessable vitrimer of depolymerized oligomers. They use glycerol as a cleaving agent to partially depolymerize the plastic waste and obtain branched oligomers, which are then used to produce a crosslinked yet reprocessable vitrimer. This work shows the potential of using depolymerized plastic waste to create strong and recyclable vitrimer resins.
Chemical depolymerization has been identified as a promising approach towards recycling of plastic waste. However, complete depolymerization may be energy intensive with complications in purification. In this work, we have demonstrated upcycling of mixed plastic waste comprising a mixture of polyester, polyamide, and polyurethane through a reprocessable vitrimer of the depolymerized oligomers. Using poly(ethylene terephthalate) (PET) as a model polymer, we first demonstrated partial controlled depolymerization, using glycerol as a cleaving agent, to obtain branched PET oligomers. Recovered PET (RPET) oligomer was then used as a feedstock to produce a crosslinked yet reprocessable vitrimer (vRPET) despite having a wide molecular weight distribution using a solventless melt processing approach. Crosslinking and dynamic interactions were observed through rheology and dynamic mechanical analysis (DMA). Tensile mechanical studies showed no noticeable decrease in mechanical strength over multiple repeated melt processing cycles. Consequently, we have clearly demonstrated the applicability of the above method to upcycle mixed plastic wastes into vitrimers and reprocessable composites. This work also afforded insights into a potentially viable alternative route for utilization of depolymerized plastic/mixed plastic waste into crosslinked vitrimer resins manifesting excellent mechanical strength, while remaining reprocessable/ recyclable for cyclical lifetime use. Chemical depolymerization is a promising approach to recycle plastic waste, but complete depolymerization is energy-intense. Here, the authors show upcycling of mixed plastic waste to highly-crosslinked, reprocessable vitrimers through incomplete depolymerization using glycerol as a cleaving agent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据