4.7 Article

3D-printed wound dressings containing a fosmidomycin-derivative prevent Acinetobacter baumannii biofilm formation

期刊

ISCIENCE
卷 26, 期 9, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.isci.2023.107557

关键词

-

向作者/读者索取更多资源

In this study, the antimicrobial activity of the fosmidomycin prodrug CC366 against Acinetobacter baumannii was evaluated. The results showed that CC366 exhibited good bacteriostatic and anti-biofilm activity against A. baumannii. Additionally, a 3D-printed wound dressing incorporating CC366 successfully prevented A. baumannii infection.
Acinetobacter baumannii causes a wide range of infections, including wound infections. Multidrug-resistant A. baumannii is a major healthcare concern and the development of novel treatments against these infections is needed. Fosmidomycin is a repurposed antimalarial drug targeting the non-mevalonate pathway, and several derivatives show activity toward A. baumannii. We evaluated the antimicrobial activity of CC366, a fosmidomycin prodrug, against a collection of A. baumannii strains, using various in vitro and in vivo models; emphasis was placed on the evaluation of its anti-biofilm activity. We also developed a 3D-printed wound dressing containing CC366, using melt electrowriting technology. Minimal inhibitory concentrations of CC366 ranged from 1 to 64 mg/mL, and CC366 showed good biofilm inhibitory and moderate biofilm eradicating activity in vitro. CC366 successfully eluted from a 3D-printed dressing, the dressings prevented the formation of A. baumannnii wound biofilms in vitro and reduced A. baumannii infection in an in vivo mouse model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据