4.7 Article

Controlling morpho-electrophysiological variability of neurons with detailed models

期刊

ISCIENCE
卷 26, 期 11, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.isci.2023.108222

关键词

-

向作者/读者索取更多资源

This study focuses on the variability of multi-compartmental morphologies in detailed biophysical models of neurons. A Markov chain Monte Carlo method is used to generate populations of electrical models that reproduce the variability of experimental recordings. It is found that morphological variability alone is insufficient to reproduce electrical variability.
Variability, which is known to be a universal feature among biological units such as neuronal cells, holds significant importance, as, for example, it enables a robust encoding of a high volume of information in neuronal circuits and prevents hypersynchronizations. While most computational studies on electrophysiological variability in neuronal circuits were done with single-compartment neuron models, we instead focus on the variability of detailed biophysical models of neuron multi-compartmental morphologies. We leverage a Markov chain Monte Carlo method to generate populations of electrical models reproducing the variability of experimental recordings while being compatible with a set of morphologies to faithfully represent specifi morpho-electrical type. We demonstrate our approach on layer 5 pyramidal cells and study the morpho-electrical variability and in particular, find that morphological variability alone is insufficient to reproduce electrical variability. Overall, this approach provides a strong statistical basis to create detailed models of neurons with controlled variability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据