4.7 Article

Spatially distinct otic mesenchyme cells show molecular and functional heterogeneity patterns before hearing onset

期刊

ISCIENCE
卷 26, 期 10, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.isci.2023.107769

关键词

-

向作者/读者索取更多资源

This study reveals the transcriptional and functional heterogeneity of otic mesenchyme cells (OMCs) and their division into four distinct populations. This heterogeneity and complexity of OMCs commences during early phases of cochlear development.
The cochlea consists of diverse cellular populations working in harmony to convert mechanical stimuli into electrical signals for the perception of sound. Otic mesenchyme cells (OMCs), often considered a homogeneous cell type, are essential for normal cochlear development and hearing. Despite being the most numerous cell type in the developing cochlea, OMCs are poorly understood. OMCs are known to differentiate into spatially and functionally distinct cell types, including fibrocytes of the lateral wall and spiral limbus, modiolar osteoblasts, and specialized tympanic border cells of the basilar membrane. Here, we show that OMCs are transcriptionally and functionally heterogeneous and can be divided into four distinct populations that spatially correspond to OMC-derived cochlear structures. We also show that this heterogeneity and complexity of OMCs commences during early phases of cochlear development. Finally, we describe the cell-cell communication network of the developing cochlea, inferring a major role for OMC in outgoing signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据