4.7 Article

Mechanically sensitive HSF1 is a key regulator of left-right symmetry breaking in zebrafish embryos

期刊

ISCIENCE
卷 26, 期 10, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.isci.2023.107864

关键词

-

向作者/读者索取更多资源

This study reveals that heat shock factor 1 (HSF1) is asymmetrically activated in the presence of nodal flow in zebrafish embryos. Deficiency in HSF1 expression leads to situs inversus and disrupted gene expression asymmetry of nodal signaling proteins. Additionally, cilia and Ca(2+) Akt signaling axis are crucial for the activation of HSF1 under mechanical stress.
The left-right symmetry breaking of vertebrate embryos requires nodal flow. However, the molecular mechanisms that mediate the asymmetric gene expression regulation under nodal flow remain elusive. Here, we report that heat shock factor 1 (HSF1) is asymmetrically activated in the Kupffer's vesicle of zebrafish embryos in the presence of nodal flow. Deficiency in HSF1 expression caused a significant situs inversus and disrupted gene expression asymmetry of nodal signaling proteins in zebrafish embryos. Further studies demonstrated that HSF1 is a mechanosensitive protein. The mechanical sensation ability of HSF1 is conserved in a variety of mechanical stimuli in different cell types. Moreover, cilia and Ca(2+)Akt signaling axis are essential for the activation of HSF1 under mechanical stress in vitro and in vivo. Considering the conserved expression of HSF1 in organisms, these findings unveil a fundamental mechanism of gene expression regulation by mechanical clues during embryonic development and other physiological and pathological transformations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据