4.8 Article

A resilient MXene/CNT nano-accordion framework for anode-free sodium-metal batteries with exceptional cyclic stability

期刊

ENERGY STORAGE MATERIALS
卷 63, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ensm.2023.103024

关键词

Anode-free sodium-metal batteries; MXene; Anode-free battery; Energy storage; Plating/stripping

向作者/读者索取更多资源

Anode-free sodium-metal batteries are a promising alternative for high-end batteries due to their high theoretical capacity, low cost, and high abundance. However, they suffer from poor long-term cyclic stability. In this study, mechanically resilient MXene/CNT nano-accordion frameworks (NAFs) were engineered to address this issue and enable efficient sodium deposition.
Anode-free sodium-metal batteries are considered one of the most promising alternatives for developing high-end batteries due to their high theoretical capacity, low cost, and high natural abundance. However, they have severe drawbacks in the form of inferior long-term cyclic stability. We engineered mechanically resilient MXene/CNT nano-accordion frameworks (NAFs) to host significant Na without dendrite development, even at high currents. The microcellular structures of MXene/CNT-NAFs possess numerous micro-sized pores and sodium nucleation sites. The synergetic effects of strong adhesion and charge transfer between MXene and CNT reduce overpotential during plating/stripping and facilitate uniform Na deposition. Resilient nano-accordion structures are compressed by capillary of Na nucleation during plating and expand during stripping, allowing long-term plating/ stripping with little volume change. These benefits allow the MXene/CNT-NAFs/Na asymmetric cell to maintain its average CE at 99.7 % with capacities of 1.0 mAh & sdot;cm- 2 at 1.0 mA & sdot;cm- 2 for 900 h. Furthermore, MXene/CNTNAFs symmetric cell exhibits a very low overpotential of 12.0 mV after 1,500 h with a capacity of 3.0 mAh & sdot;cm- 2 at 3.0 mA & sdot;cm- 2 and stores high capacities of 20.0 mAh & sdot;cm- 2 at 5.0 mA & sdot;cm-2 for 1,200 h. The anode-free MXene/ CNT-NAFs//Na3V2(PO4)3@C full-cell demonstrates exceptional long-term cyclic stability over 5,000 cycles at 5.0 C and 10.0 C without cell failure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据