4.8 Article

Valley-symmetry-preserved transport in ballistic graphene with gate-defined carrier guiding

期刊

NATURE PHYSICS
卷 12, 期 11, 页码 1022-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHYS3804

关键词

-

资金

  1. National Research Foundation (NRE) [2011-030046, 2011-0030789]
  2. GFR Center for Advanced Soft Electronics [2014M3A6A5060956]
  3. National Research Foundation of Korea [2011-0030789] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Ever since the discovery of graphene(1), valley symmetry and its control(2,3) in the material have been a focus of continued studies in relation to valleytronics(4,5). Carrier-guiding quasi-one-dimensional (1D) graphene nanoribbons (GNRs)(6-12) with quantized energy subbands preserving the intrinsic Dirac nature have provided an ideal system to that end. Here, by guiding carriers through dual-gate operation in high-mobility monolayer graphene, we report the realization of quantized conductance in steps of 4e(2)/h in zero magnetic field, which arises from the full symmetry conservation of quasi-1D ballistic GNRs with effective zigzag-edge conduction. A tight-binding model calculation confirms conductance quantization corresponding to zigzag-edge conduction even for arbitrary GNR orientation. Valley-symmetry conservation is further confirmed by intrinsic conductance interference with a preserved Berry phase of pi in a graphene-based Aharonov-Bohm(AB) ring preparedby similar dualgating. This top-down approach for gate-defined carrier guiding in ballistic graphene is of particular relevance in the efforts towards efficient and promising valleytronic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据