4.8 Article

Controllable 0-π Josephson junctions containing a ferromagnetic spin valve

期刊

NATURE PHYSICS
卷 12, 期 6, 页码 564-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHYS3681

关键词

-

资金

  1. DOE-BES [DE-FG02-06ER46341]
  2. Office of the Director of National. Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via US Army Research Office [W911NF-14-C-0115]
  3. U.S. Department of Energy (DOE) [DE-FG02-06ER46341] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Superconductivity and ferromagnetism are antagonistic forms of order, and rarely coexist. Many interesting new phenomena occur, however, in hybrid superconducting/ferromagnetic systems. For example, a Josephson junction containing a ferromagnetic material can exhibit an intrinsic phase shift of pi in its ground state for certain thicknesses of the material(1). Such 'pi-junctions' were first realized experimentally in 2001 (refs 2,3), and have been proposed as circuit elements for both high-speed classical superconducting computing and for quantum computing(4-10). Here we demonstrate experimentally that the phase state of a Josephson junction containing two ferromagnetic layers can be toggled between 0 and pi by changing the relative orientation of the two magnetizations. These controllable 0-pi junctions have immediate applications in cryogenic memory, where they serve as a necessary component to an ultralow power superconducting computer(11). Such a fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers(12). Phase-controllable junctions also open up new possibilities for superconducting circuit elements such as superconducting 'programmable logic', where they could function in superconducting analogues to field-programmable gate arrays.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据