4.8 Article

Critical slowing down in purely elastic 'snap-through' instabilities

期刊

NATURE PHYSICS
卷 13, 期 2, 页码 142-145

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHYS3915

关键词

-

资金

  1. European Research Council under the European Union's Horizon Programme/ERC Grant [637334]
  2. EPSRC
  3. Engineering and Physical Sciences Research Council [1500579] Funding Source: researchfish
  4. European Research Council (ERC) [637334] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Many elastic structures have two possible equilibrium states': from umbrellas that become inverted in a sudden gust of wind, to nanoelectromechanical switches(2,3), origami patterne(4,5) and the hopper popper, which jumps after being turned inside-out(6). These systems typically transition from one state to the other via a rapid 'snap-through'. Snap-through allows plants to gradually store elastic energy, before releasing it suddenly to generate rapid motiones(7,8), as in the Venus flytrap(9). Similarly, the beak of the hummingbird snaps through to catch insects mid-flight(10), while technological applications are increasingly exploiting snap-through instabilities(11-13). In all of these scenarios, it is the ability to repeatedly generate fast motions that gives snap-through its utility. However, estimates of the speed of snap-through suggest that it should occur more quickly than is usually observed. Here, we study the dynamics of snap-through in detail, showing that, even without dissipation, the dynamics slow down close to the snap-through transition. This is reminiscent of the slowing down observed in critical phenomena, and provides a handheld demonstration of such phenomena, as well as a new tool for tuning dynamic responses in applications of elastic bistability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据