4.7 Article

Enhancing Autonomous Guided Vehicles with Red-Black TOR Iterative Method

期刊

MATHEMATICS
卷 11, 期 20, 页码 -

出版社

MDPI
DOI: 10.3390/math11204393

关键词

finite difference method; accelerated over-relaxation; Laplace's equation; path navigation; optimal path; collision-free; block iterative schemes

向作者/读者索取更多资源

This article presents an extended variant of the block over-relaxation method to address the problem of autonomous guided vehicles. A numerical approach is used to explicitly solve the path navigation and obstacle avoidance problem. The proposed method improves the computational execution of the algorithm by combining the potential field technique with Laplace's equation. The experimental results show that the proposed method outperforms existing methods in terms of computational complexity and execution time.
To address an autonomous guided vehicle problem, this article presents extended variants of the established block over-relaxation method known as the Block Modified Two-Parameter Over-relaxation (B-MTOR) method. The main challenge in handling autonomous-driven vehicles is to offer an efficient and reliable path-planning algorithm equipped with collision-free feature. This work intends to solve the path navigation with obstacle avoidance problem explicitly by using a numerical approach, where the mobile robot must project a route to outperform the efficiency of its travel from any initial position to the target location in the designated area. The solution builds on the potential field technique that uses Laplace's equation to restrict the formation of potential functions across operating mobile robot regions. The existing block over-relaxation method and its variants evaluate the computation by obtaining four Laplacian potentials per computation in groups. These groups can also be viewed as groups of two points and single points if they're close to the boundary. The proposed B-MTOR technique employs red-black ordering with four different weighted parameters. By carefully choosing the optimal parameter values, the suggested B-MTOR improved the computational execution of the algorithm. In red-black ordering, the computational molecules of red and black nodes are symmetrical. When the computation of red nodes is performed, the updated values of their four neighbouring black nodes are applied, and conversely. The performance of the newly proposed B-MTOR method is compared against the existing methods in terms of computational complexity and execution time. The simulation findings reveal that the red-black variants are superior to their corresponding regular variants, with the B-MTOR approach giving the best performance. The experiment also shows that, by applying a finite difference method, the mobile robot is capable of producing a collision-free path from any start to a given target point. In addition, the findings also verified that numerical techniques could provide an accelerated solution and have generated a smoother path than earlier work on the same issue.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据