4.7 Article

A Novel Artificial Visual System for Motion Direction Detection with Completely Modeled Retinal Direction-Selective Pathway

期刊

MATHEMATICS
卷 11, 期 17, 页码 -

出版社

MDPI
DOI: 10.3390/math11173732

关键词

neural networks; pattern recognition; motion direction detection; retinal direction-selective ganglion cells

向作者/读者索取更多资源

In this paper, a complete quantified model is proposed to explain the retinal motion direction selection pathway and the global motion direction information acquisition mechanism from ganglion cells to the cortex. The experimental results demonstrate that this mechanism exhibits outstanding performance in motion direction detection and has biomimetic computing advantages.
Some fundamental visual features have been found to be fully extracted before reaching the cerebral cortex. We focus on direction-selective ganglion cells (DSGCs), which exist at the terminal end of the retinal pathway, at the forefront of the visual system. By utilizing a layered pathway composed of various relevant cells in the early stage of the retina, DSGCs can extract multiple motion directions occurring in the visual field. However, despite a considerable amount of comprehensive research (from cells to structures), a definitive conclusion explaining the specific details of the underlying mechanisms has not been reached. In this paper, leveraging some important conclusions from neuroscience research, we propose a complete quantified model for the retinal motion direction selection pathway and elucidate the global motion direction information acquisition mechanism from DSGCs to the cortex using a simple spiking neural mechanism. This mechanism is referred to as the artificial visual system (AVS). We conduct extensive testing, including one million sets of two-dimensional eight-directional binary object motion instances with 10 different object sizes and random object shapes. We also evaluate AVS's noise resistance and generalization performance by introducing random static and dynamic noises. Furthermore, to thoroughly validate AVS's efficiency, we compare its performance with two state-of-the-art deep learning algorithms (LeNet-5 and EfficientNetB0) in all tests. The experimental results demonstrate that due to its highly biomimetic design and characteristics, AVS exhibits outstanding performance in motion direction detection. Additionally, AVS possesses biomimetic computing advantages in terms of hardware implementation, learning difficulty, and parameter quantity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据