4.8 Article

Probing the Bose glass-superfluid transition using quantum quenches of disorder

期刊

NATURE PHYSICS
卷 12, 期 7, 页码 646-649

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHYS3695

关键词

-

资金

  1. National Science Foundation [PHY 12-05548, PHY 15-05468]
  2. Army Research Office [W911NF-12-1-0462]
  3. Division Of Physics
  4. Direct For Mathematical & Physical Scien [1205548, 1505468] Funding Source: National Science Foundation

向作者/读者索取更多资源

The disordered Bose-Hubbard model-a paradigm for strongly correlated and disordered bosonic systems(1)-is central to our understanding of quantum phase transitions(2). Despite extensive theoretical work on the disordered Bose-Hubbard model, little is known about the impact of temperature, the dynamical behaviour of quantum phases, and how equilibrium is affected during quantum phase transitions. These issues are critically important to applications such as quantum annealing(3-7) and electronics based on quantum phase transitions(8). Here, we use a quantum quench of disorder in an ultracold lattice gas to dynamically probe the superfluid-Bose glass quantum phase transition at non-zero temperature (Fig. 1). By measuring excitations generated during the quench, we provide evidence for superfluid puddles in the Bose glass phase and produce a superfluid-Bose glass phase diagram consistent with completely constrained, finite temperature, and equilibrium quantum Monte Carlo simulations. The residual energy from the quench, which is an efficacy measure for optimization through quantum annealing, is unchanged for quench times spanning nearly a hundred tunnelling times.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据