4.7 Article

3D-EddyNet: A Novel Approach for Identifying Three-Dimensional Morphological Features of Mesoscale Eddies in the Ocean

期刊

出版社

MDPI
DOI: 10.3390/jmse11091779

关键词

mesoscale eddies identification; 3D-UNet; 3D structure of mesoscale eddies; deep learning

向作者/读者索取更多资源

This paper presents the development of a deep learning model called 3D-EddyNet, which accurately identifies and visualizes the three-dimensional morphology of mesoscale eddies. The model outperforms existing 2D models and shows a 20% improvement in detection accuracy. The results obtained align closely with those of previous studies, confirming the effectiveness of the model.
Mesoscale eddies are characterized by swirling currents spanning from tens to hundreds of kilometers in diameter three-dimensional attributes holds paramount significance in driving advancements in both oceanographic research and engineering applications. Nonetheless, a notable absence of models capable of adeptly harnessing the scarcity of high-quality annotated marine data, to efficiently discern the three-dimensional morphological attributes of mesoscale eddies, is evident. To address this limitation, this paper constructs an innovative deep-learning-based model termed 3D-EddyNet, tailored for the precise identification and visualization of mesoscale eddies. In contrast to the prevailing 2D models that remain confined to surface-level data, 3D-EddyNet takes full advantage of three-dimensional convolutions to capture the essential characteristics of eddies. It is specifically tailored for recognizing spatial features within mesoscale eddies, including parameters like position, radius, and depth. The combination of dynamic convolutions and residual networks effectively enhances the model's performance in a synergistic manner. The model employs the PReLU activation function to tackle gradient vanishing issues and improve convergence rates. It also addresses the challenge of foreground-background imbalance through cross-entropy functions. Additionally, to fine-tune the model's effectiveness during the training phase, techniques such as random dropblock and batch normalization are skillfully incorporated. Furthermore, we created a training dataset using HYCOM data specifically from the South China Sea region. This dataset allowed for a comprehensive analysis of the spatial-temporal distribution and three-dimensional morphology of the eddies, serving as an assessment of the model's practical effectiveness. The culmination of this analysis reveals an impressive 20% enhancement over 3D-UNet in detection accuracy, coupled with expedited convergence speed. Notably, the results obtained through our detection using empirical data align closely with those obtained by other scholars. The mesoscale eddies within this specific region unveil a discernible northeast-to-southwest distribution pattern, categorized into three principal morphological classifications: bowl-shaped, olive-shaped, and nearly cylindrical, with the bowl-shaped eddies prominently dominating.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据