4.7 Article

Real-Time Instance Segmentation for Detection of Underwater Litter as a Plastic Source

期刊

出版社

MDPI
DOI: 10.3390/jmse11081532

关键词

underwater litter; plastic litter; computer vision; litter detection; instance segmentation; YOLACT; Mask R-CNN

向作者/读者索取更多资源

Thousands of tonnes of litter enter the ocean every day, posing a significant threat to marine life and ecosystems. This paper focuses on the detection of ocean plastic using neural network models.
Thousands of tonnes of litter enter the ocean every day, posing a significant threat to marine life and ecosystems. While floating and beach litter are often in the spotlight, about 70% of marine litter eventually sinks to the seafloor, making underwater litter the largest accumulation of marine litter that often goes undetected. Plastic debris makes up the majority of ocean litter and is a known source of microplastics in the ocean. This paper focuses on the detection of ocean plastic using neural network models. Two neural network models will be trained, i.e., YOLACT and the Mask R-CNN, for the instance segmentation of underwater litter in images. The models are trained on the TrashCAN dataset, using pre-trained model weights trained using COCO. The trained neural network could achieve a mean average precision (mAP) of 0.377 and 0.365 for the Mask R-CNN and YOLACT, respectively. The lightweight nature of YOLACT allows it to detect images at up to six times the speed of the Mask R-CNN, while only making a comparatively smaller trade-off in terms of performance. This allows for two separate applications: YOLACT for the collection of litter using autonomous underwater vehicles (AUVs) and the Mask R-CNN for surveying litter distribution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据