4.7 Article

Dynamic Modeling and Robust Trajectory Tracking Control of a Hybrid Propulsion-Based Small Underwater Robot

期刊

出版社

MDPI
DOI: 10.3390/jmse11101934

关键词

robust trajectory tracking; adaptive control; hydrodynamic coefficients; underwater robots; hybrid propulsion

向作者/读者索取更多资源

This paper proposes a hybrid propulsion-based small underwater robot for robust trajectory tracking control in a harsh and complex underwater environment. The proposed control architecture ensures the stability and robustness of the robot's trajectory tracking.
This paper proposes a hybrid propulsion-based small underwater robot for robust trajectory tracking control in a harsh and complex underwater environment. The robot is equipped with a Coanda-effect jet thruster and a pair of propeller-based reconfigurable magnetic-coupling thrusters, allowing it to traverse safely in confined or cluttered spaces as well as cruise efficiently in the open water. To investigate the robot dynamic modeling, we first formulated its simplified mathematical model and estimated the hydrodynamic coefficients by performing the planar motion mechanism using CFD (computational fluid dynamics) simulation. Then, a double-loop trajectory tracking control architecture was designed considering the model uncertainties and environmental disturbances. Based on Lyapunov theory, the outer-loop kinematic control produces the virtual velocity command, while the inner-loop dynamic control adopts the full-state feedback L1-adaptive control to match the command. The asymptotic convergence of the tracking errors and the stability of the whole closed-loop system are guaranteed. Finally, comparative simulations in the presence of unknown disturbances and the variation of model parameters were carried out to verify the robustness of our proposed trajectory tracking control, which is also suitable for the separated son robots.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据